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Nomenclature 
 

As reinforcement area wexp experimental crack width 

b width of cross-section wmax maximum crack width 

c concrete cover depth wmean average crack width 

d effective depth of cross-section wsim numerical crack width 

Es modulus of elasticity of steel γ orientation factor 

fcm concrete strength ε strain 

fy yield strength εf fracture strain 

fu ultimate tensile strength w model uncertainty of crack width 

Gf fracture energy µ mean model uncertainty of crack width 

h height of cross-section ρ reinforcing ratio of tensile reinforcement 

Lt crack band size σ normal stress in crack 

Mu ultimate bending moment σs tensile stress in reinforcement 

 bar diameter τmax maximum bond strength 

smax maximum crack spacing DIC digital image correlation 

smean average crack spacing FE finite element 

V coefficient of variation of model uncertainty  IP integration points 

w crack opening RC reinforced concrete 

wc crack opening at complete release of stress 
 

  

1 Introduction 

The current state of the numerical simulations of the rein-

forced concrete (RC) resistance reasonably describes the 

ULS model uncertainty [1]. Contrarily, the SLS verification 

of the crack width is not the case, notwithstanding the the-

oretical advancements [2]. The question of the crack width 

model quality was investigated in the concept of the digital 

model serving for the simulation of performance of infra-

structure in environmental conditions.   

The numerical analysis used in this report employs a 

smeared crack approach because of its simplicity, engi-

neering efficiency, and user-friendliness.  Rashid [3], Cer-

venka & Gerstle [4], Bazant & Oh [5], and Rots & Blau-

vendraat [6] stimulated the smeared crack model 

development. 
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Gribniak et al. [7] revealed the ability of the smeared crack 

model with embedded reinforcement to predict the RC 

beams’ deformations. Further, Cervenka et al. [8] ob-

served adequate mean crack predictions for a limited ex-

perimental database. These results demonstrated the 

maximum crack width underestimation and the significant 

coefficient of variation of 35%. 

Rimkus et al. [9] employed the smeared crack model to 

improve the numerical efficiency of the cracking analysis. 

The crack width parametric analysis included the effects of 

the bond model, fracture energy, and finite element mesh. 

The study proved that the perfect bond model (without a 

slip on the reinforcement surface) well simulates the max-

imum crack width prediction and that the cracks in the 

concrete induce the bond slip. However, the maximum and 

mean crack ratio of 1.18 was significantly smaller than in 

the test (i.e., 1.7) and provided the overestimation of the 

mean crack widths. Furthermore, the model uncertainty 

coefficient of variation was 40%, indicating a significant 

scatter of the results.  

The simulations presented in this chapter extend the pre-

vious solutions by using an updated experimental data-

base and employing an enhanced solution method of 

strain localization in the smeared crack model. A more 

extensive treatment by the authors can be found in [10]. 

2 The crack width database 

The 17 beam samples had nominally identical geometry: 
300 mm height, 280 mm width, and 3280 mm length. The 
test beams were subjected to the four-point bending 
scheme with a constant moment span length of 1000 mm, 
as shown in Figure 1. 

 
Figure 1 The loading scheme of the VILNIUS TECH tests. 

 

Figure 2  The loading scheme of the VILNIUS TECH tests. 

The investigation object was the crack width in the con-

stant moment zone. The investigation parameters are: re-

inforcement ratio, reinforcement arrangement, and mate-

rial type. Two reinforcing materials are used: 13 beam 

specimens were provided by steel bars, and the 4 beams 

with the Schöck ComBAR glass fibre-reinforced polymer 

(GFRP) bars. Figure 2 shows the cross-sections with the 

reinforcement arrangement and the reinforcement surface 

shapes. The standard 150×300 mm cylinders and 

280×300×350 mm unreinforced beam fragments were 

produced and stored together with the beam specimens to 

determine the concrete compressive strength and drying 

shrinkage deformations. All samples were made in several 

batches from the concrete plant with a 16 mm maximum 

aggregate size and a target strength 50 MPa. Table 1 and 

Table 2 define the cross-section geometry and mechanical 

parameters of reinforcement and concrete.  

Table 1 VILNIUS TECH tested beams’ parameters 

Set Beam 
h 

mm 

b 

mm 
ρ, % 

fcm 

MPa 
εcs, ‰ 

I 

 

 
300 284 1.00 49.4 2.253 

S1-3 299 283 0.99 48.2 2.720 

S1-4 300 280 1.00 49.4 2.253 

S1-6 303 271 1.00 43.0 4.120 

S2-3 300 282 0.60 48.1 2.677 

II 

S3-2-1 304 278 0.30 47.7 2.230 

S3-2-2 298 283 0.30 49.5 2.851 

S3-2-3 298 284 0.30 50.9 2.109 

S3-2-6 303 279 0.30 50.9 2.240 

S3-2-9 298 285 0.30 44.2 1.970 

S3-2-10 298 284 0.30 44.6 1.970 

III 
S1-1 299 282 1.00 49.7 2.287 

S2-1 301 279 0.60 49.4 2.407 

IV 

S2-4-1F 304 273 0.60 47.2 3.177 

S2-4-2F 303 276 0.60 49.4 3.320 

S2-5F 302 276 0.67 56.0 3.787 

S2-6F 303 273 0.61 56.0 3.787 

 
Table 2 Reinforcement characteristics 

Material , mm Er, GPa fy, MPa fu, MPa 

Steel 

6 223.5 585.4 642.5 

8 209.8 589.0 625.1 

10 209.9 578.1 658.5 

14 210.5 632.3 695.1 

22 199.3 551.1 553.0 

GFRP 

8 65.1 – 1491 

12 64.7 – 1468 

16 65.1 – 1491 

 

In these tables, h and b are the cross-section height and 

width; d is the effective depth (three values correspond to 

the multilayer reinforcement layout; dm is the averaged 

depth, corresponding to the reinforcement gravity center; 

as2 is the compressive reinforcement depth; ρ is the rein-

forcement ration; fcm and εcs are the compressive strength 

and shrinkage of concrete;  is the bar diameter; Er, fy, 

and fu are the modulus of elasticity and yielding and ulti-

mate strengths of reinforcement. More details can be 

found in the references by Gribniak [11], [12]. The crack 

patterns of some beams after testing are shown in Figure 

3. Table 3 specifies the crack values corresponding to load 



P (Figure 1), representing about 50%-60% of the load-

bearing capacity. This loading level is assumed as a SLS 

condition. The theoretical ULS load is based on the as-

sumption of the 500 MPa for the reinforcement yielding 

stress (independently of the reinforcement material), 

Gribniak [13]. 

 

 

Figure 3 The crack patterns of the beams tested at the VILNIUS TECH. 

Table 3 Crack width measures in the experiment. 

Set Beam 
P 

kN 

wm         wmax 

mm×10–2 

𝑤max

𝑤𝑚
 

I 

S1-2 124.3 7.1 10.2 1.437 

S1-3 120.2 8.5 14.0 1.647 

S1-4 100.0 6.3 12.0 1.905 

S1-6 55.9 3.8 6.0 1.579 

S2-3 76.2 5.5 12.0 2.182 

II 

S3-2-1 52.2 10.1 14.0 1.386 

S3-2-2 48.4 7.1 12.0 1.690 

S3-2-3 48.0 6.8 14.0 2.059 

S3-2-6 52.1 6.3 14.0 2.222 

S3-2-9 48.6 6.4 12.0 1.875 

S3-2-10 52.4 10.8 16.2 1.500 

III S1-1 96.4 9.3 12.4 1.333 

S2-1 56.2 5.9 8.2 1.390 

IV 

S2-4-1F 67.2 28.6 38.0 1.329 

S2-4-2F 67.3 37.6 48.0 1.277 

S2-5F 59.9 16.5 30.0 1.818 

S2-6F 49.8 15.1 48.0 3.179 

 

2 Finite element modeling 

The analysis employs the nonlinear finite element (FE) 
software ATENA [14]. The description of the constitutive 
model is limited to the tensile behavior which is relevant 
to the cracking problem. More details can be found in Cer-

venka & Papanikolau [15]. 

The adopted smeared crack model covers the following 
failure mechanisms: mode I fracture (crack opening), and 

mode II and III fractures (crack sliding). (For complete-
ness, a compressive crushing of cracked concrete is also 
included in the model, but it does not apply to this study.)  
Figure 4 illustrates the mode I constitutive relation based 
on the crack opening law.  

 

Figure 4  The crack band model. 

The cohesive crack-softening model is defined according 
to Hordijk [16]: 

𝜎𝑐𝑡 = 𝑓𝑐𝑡𝑚 {[1 + (𝑐1
𝑤

𝑤𝑐
)

3

] exp (−𝑐2
𝑤

𝑤𝑐
) −

𝑤

𝑤𝑐
(1 + 𝑐1

3) exp(−𝑐2)} (1) 

where: 

𝑤𝑐 = 5.14
𝐺𝑓

𝑓𝑐𝑡
; 𝑐1 = 3; 𝑐2 = 6.93.                           (2) 

In the above equations, 𝜎𝑐𝑡 is the tensile stress in a 

crack, w is the crack width, fct is tensile strength, Gf is 
fracture energy. 

According to the crack band model the crack width is re-
lated to fracture strain 𝜀𝑓 : 

𝑤 = 𝜀𝑓𝛾𝐿𝑡,                                                        (3) 

where  𝛾𝐿𝑡 is the crack band size, Lt is a finite element size 

projection parallel to the crack plane, and γ is the crack 
orientation parameter (ranging from 1 for elements 
aligned with the cracks up to 1.5 for skew orientations). 
The fracture strain is the strain component associated with 

the fracture and represents damage due to cracking in 
terms of strains. The crack plane orientation is defined as 
a normal to the principal tension in concrete at the time 
when the principal stress in concrete reaches the tensile 
strength. A crack can rotate to remain coaxial with the 
principal tension until the threshold softening stress is 
reached: 

𝜎𝑐 = 𝑐𝑓𝑖𝑥𝑓𝑐𝑡𝑚.                                                       (4) 

where 𝑐𝑓𝑖𝑥 is a factor for the threshold limiting the rotated 

crack mode defining a transition from the fracture pro-

cess zone to the localized crack. 

The fracture modes II and III are described by the modi-
fied compression field theory, MCFT (Bentz [17]), intro-
ducing the following shear stress limit: 

𝜎𝑖𝑗 ≤
0.18√𝑓𝑐𝑚(𝑎𝑔+16)

0.31𝑎𝑔+4.96+24𝑤
, 𝑖 ≠ 𝑗.                                  (5) 

where σij is the shear stress component on the crack sur-
face, i, j are the tensor component numbers.  

The softening behavior in shear is related to the mode I 

fracture as follows:  

𝐾𝑡
𝑐𝑟 = 𝑠𝐹𝐾𝑛

𝑐𝑟 , 𝐾𝑛
𝑐𝑟 =

𝜎𝑐𝑡

𝜀𝑓
, 𝐾𝑡

𝑐𝑟 =
𝜏𝑐𝑡

𝛾𝑓
  ,                        (6) 

where 𝐾𝑛
𝑐𝑟 , 𝐾𝑡

𝑐𝑟 𝑎𝑟𝑒 the stiffnesses of the crack opening due 

to the normal and shear stress, respectively, 𝜎𝑐𝑡, 𝜏𝑐𝑡 are the 

softening stresses due to the normal and shear stress. The 
shear factor 𝑠𝐹 gives a relation between the normal and 

shear fracture modes. In this study 𝑠𝐹 = 20 𝑖𝑠 used. The 

failure modes II and III can only be activated in the fixed 



crack state, since in the rotated crack mode the crack 
plane orientation is coaxial with the principal stress and 
thus without shear stress. 

Cervenka et al. [18] have shown that the crack band size 
has limits, which are due to material heterogeneity. A very 
fine finite element mesh may lead to unrealistically ductile 
failure prediction and the minimum crack band size can 
overcome this problem. Bazant & Pijaudier-Cabot [19] 
proposed that the characteristic size can be considered for 
the crack band size. This study assumes the crack band 
limit in tension by 18 mm, which is slightly greater than 

the maximum size of aggregates. 

 

 
Figure 5 The 3D FE model of the beam with the mesh refinement. 

 

Figure 6 The 3D FE model of the beam with a 3D bar (left). Cross 

section (right). 

Figure 5 shows the FE model employing the iso-parametric 
linear 3D solid brick finite elements with eight integration 
points. The embedded linear truss elements (1D without 
bending stiffness) are used for reinforcement in most 

cases. In addition, the parametric study includes a 2D 
plane stress model with iso-parametric linear quadrilateral 
finite elements, to investigate dimensional simplification. 
Furthermore, the 3D solid model for reinforcement shown 
in Figure 6 is investigated for S1-4 beam to demonstrate 
the effects of bending stiffness and of a concrete cover of 
the bar reinforcement. 

In the central beam span, a mesh refinement was applied. 
This volume was connected to the end regions by a mas-
ter-slave method (Jendele & Cervenka [20]). In this vol-
ume three element sizes of 60 mm, 30 mm, and 15 mm 
were applied. They were designated as M60, M30, and 

M15 in the mesh parameter study. A crack band limit of 
18 mm was used in the models with mesh sizes less than 
30 mm. In the above study the number of nodes ranged 
from 1314 (2D model with M30 mesh) to 126511 (B8 
beam model with M15 mesh). 

Following the findings of the previous investigation (Rim-
kus et al. [21]) a perfect bond model without a slip on the 
reinforcement surface was assumed. In this approach, the 
cracks in the bar vicinity simulate a bond slip.  

The shrinkage for beams tested by VILNIUSTECH, Table 
1, was modelled according to the laboratory data.  

The tensile material parameters of concrete, tensile 

strength 𝑓𝑐𝑡𝑚 and fracture energy 𝐺𝑓,  not provided by la-

boratory tests, were estimated based on the fib Model 
Code MC2010 [22] formulas: 

𝑓𝑐𝑡𝑚 = 0.3√𝑓𝑐𝑚
3

,                                                 (7) 

𝐺𝑓 = 73𝑓𝑐𝑚
0.18.                                                    (8) 

An incremental solution method was based on the Newton-
Raphson and line-search iteration techniques and con-

trolled by the equilibrium criterion of 0.001 (ratio of the 
norm of residual forces related to the norm of external 
forces). 

The first load increment represented the combination of 
the self-weight and shrinkage actions (volumetric strains 
uniform throughout the concrete body). The loading steps 
followed incrementally up to the service load level given in 
Table 3. 

The crack width was evaluated at the integration points 
nearest to the monitoring line, i.e., on the surface line at 
the level of the tensile reinforcement gravity center. The 
values of mean and maximum crack widths were evalu-

ated for each measuring line. Note that the mean crack 
analysis included only cracks exceeding 0.02 mm, reflect-
ing the sensitivity of the experimental measurement. 

3 Crack width uncertainty analysis 

Model uncertainty of the crack width definition from the JCSS Probabil-

istic Model Code, [23] is adopted: 

𝜃𝑤 = 𝑤𝑒𝑥𝑝 𝑤𝑚𝑜𝑑⁄ ,                                                (10) 

where wexp and wmod are the measured and modeled (cal-
culated) crack widths. The experimental crack values are 
listed in Table 3. The model uncertainty equal to one indi-
cates the best modeling result. The model uncertainties in 
the range of 𝜃𝑤 < 1 and 𝜃𝑤 > 1 indicates the overestimation 

and underestimation of experimental results, respectively.  
Cervenka et al. [24] described the uncertainty of the struc-

tural resistance model applied to the ULS situation. Lindley 

[25] defined two uncertainty types, namely aleatory and 

epistemic uncertainties. The uncertainty of the theoretical 

model (simplifications and knowledge gaps), referred to as 

epistemic uncertainty is the objective of this study. The 

aleatory uncertainty describes the product imperfections 

due to geometry, treatment, material, etc. This uncer-

tainty type is unavoidable and must be considered when 

estimating reliability, but it is not the objective of this 

study. 

Table 4 The variables of parametric analysis. 

Variable Parameter 

Mesh size, mm (Code) 60 (M60), 30 (M30), and 15 (M15) 

The model dimensions 2D (plane stress) and 3D (volumetric) 

Reinforcement ratio, % 0.3, 0.6, and 1.0 

Reinforcement layout One and three layers 

Reinforcement model 1D truss, 3D solid 

Reinforcement material Steel and GFRP 

The parameter study includes the beams from Table 1. The 

effects of the variables listed in Table 4 are investigated. 

The groups include samples with common characteristic 

parameters, which enable the identification of the uncer-

tainty sources. The statistical parameters of the model un-

certainty ϑw,m , ϑw,max for the mean and maximum crack 

width, respectively, and for the maximum to mean crack 

width ratio ϑx/m are evaluated for each data set. Four dif-

ferent numerical models were applied to each set: Plane 

stress (2D-M30 with 30 mm mesh size) and 3D models 



with three mesh sizes (3D-M60, 3D-M30, and 3D-M15).  

 

Table 5  Crack width model uncertainty of Set I for different FE models. 

Beam 
2D-M30 3D-M15 3D-M30 3D-M60 

ϑw,m ϑw,max Θx/m ϑw,m ϑw,max ϑx/m ϑw,m ϑw,max ϑx/m ϑw,m ϑw,max ϑx/m 

S1-2 1.242 2.260 1.812 0.931 0.915 0.979 1.150 0.965 0.836 0.597 0.665 1.110 

S1-3 1.757 2.727 1.553 1.199 0.919 0.767 1.145 0.987 0.864 0.611 0.611 1.001 

S1-4 1.351 1.626 1.205 0.795 0.804 1.012 0.862 0.970 1.126 0.580 0.626 1.079 

S1-6 1.266 1.329 1.049 0.919 0.941 1.023 0.789 0.852 1.078 0.477 0.605 1.267 
S2-3 1.398 2.778 1.985 1.120 1.125 1.004 0.982 1.319 1.342 0.464 0.606 1.305 

Mean 1.403 2.144 1.521 0.993 0.941 0.957 0.985 1.019 1.049 0.546 0.623 1.152 

CV, % 14.8 30.3 26.0 16.5 12.3 11.2 16.5 17.3 19.8 12.8 4.1 11.2 

 

Table 6  Crack width model uncertainty of Set II for different FE models. 

Beam 
2D-M30 3D-M15 3D-M30 3D-M60 

ϑw,m ϑw,max ϑx/m ϑw,m ϑw,max ϑx/m ϑw,m ϑw,max ϑx/m ϑw,m ϑw,max ϑx/m 

S3-2-1 3.407 3.303 0.973 1.647 0.888 0.541 2.041 1.673 0.824 0.856 0.707 0.830 

S3-2-2 2.379 2.831 1.187 1.150 0.761 0.660 1.425 1.434 1.004 0.598 0.606 1.012 

S3-2-3 2.295 3.303 1.446 1.110 0.888 0.804 1.375 1.673 1.223 0.577 0.707 1.233 

S3-2-6 2.116 3.303 1.561 1.023 0.888 0.868 1.268 1.673 1.320 0.532 0.707 1.331 

S3-2-9 2.165 2.831 1.317 1.047 0.761 0.732 1.297 1.434 1.114 0.544 0.606 1.123 
S3-2-10 3.637 3.822 1.053 1.759 1.028 0.586 2.179 1.936 0.891 0.914 0.818 0.898 

Mean 2.667 3.232 1.256 1.289 0.869 0.699 1.598 1.637 1.063 0.670 0.692 1.071 

CV, % 25.2 11.5 18.1 25.2 11.5 18.1 25.2 11.5 18.1 25.2 11.4 18.1 

 
Table 7  Cracking width model uncertainty of Set III for different FE models. 

Beam 
2D-M30 3D-M15 3D-M30 3D-M60 

ϑw,m ϑw,max ϑx/m ϑw,m ϑw,max ϑx/m ϑw,m ϑw,max ϑx/m ϑw,m ϑw,max ϑx/m 

S1-1 1.730 2.260 1.211 1.444 1.345 0.933 1.862 1.277 0.687 0.884 0.867 0.982 

S2-1 2.643 3.138 1.188 1.906 1.670 0.876 2.101 2.067 0.984 0.688 0.774 1.124 

Mean 2.187 2.699 1.200 1.675 1.508 0.905 1.982 1.672 0.835 0.786 0.821 1.053 

CV, % 29.5 23.0 1.4 19.5 15.2 4.4 8.5 33.4 25.2 17.6 8.0 9.5 

 
Table 8  Cracking width model uncertainty of Set IV for different FE models. 

Beam 
3D-M15 3D-M30 3D-M60 

ϑw,m ϑw,max ϑx/m ϑw,m ϑw,max ϑx/m ϑw,m ϑw,max ϑx/m 

S2-4-1F 2.398 1.591 0.664 1.745 1.298 0.745 0.765 0.546 0.715 

S2-4-2F 3.153 2.010 0.638 2.295 1.640 0.715 1.006 0.690 0.687 

S2-5F 1.345 0.883 0.658 1.032 0.978 0.950 0.382 0.438 1.147 

S2-6F 1.232 2.37 1.651 0.733 0.975 1.714 0.332 0.706 2.126 

Mean 2.032 1.630 0.903 1.451 1.223 1.031 0.621 0.595 1.169 

CV, % 44.9 33.0 55.3 48.5 25.9 45.3 51.7 21.4 57.5 

 
Table 9  Prediction uncertainty summary. 

Set 
2D-M30 3D-M15 3D-M30 3D-M60 

ϑw,m ϑw,max ϑx/m ϑw,m ϑw,max ϑx/m ϑw,m ϑw,max ϑx/m ϑw,m ϑw,max ϑx/m 

I 
Mean 1.403 2.144 1.450 0.993 0.941 0.957 0.985 1.019 1.049 0.546 0.623 1.152 

CV, % 14.8 30.3 26.0 16.5 12.3 11.2 16.5 17.3 19.8 12.8 4.1 11.2 

II 
Mean 2.667 3.232 1.256 1.289 0.869 0.699 1.598 1.637 1.063 0.670 0.692 1.071 

CV, % 25.2 11.5 18.1 25.2 11.5 18.1 25.2 11.5 18.1 25.2 11.4 18.1 

III 
Mean 2.187 2.699 1.200 1.675 1.508 0.905 1.982 1.672 0.835 0.786 0.821 1.053 

CV, % 29.5 23.0 1.4 19.5 15.2 4.4 8.5 33.4 25.2 17.6 8.0 9.5 

IV 
Mean    2.032 1.630 0.903 1.451 1.223 1.031 0.621 0.595 1.169 

CV, %    44.9 33.0 55.3 48.5 25.9 45.3 51.7 21.4 57.5 

I-III 
Mean    1.235 1.197 0.830 1.421 1.415 1.023 0.640 0.685 1.100 

CV, %    28.1 17.0 19.8 33.4 27.6 19.7 23.6 13.0 14.1 

The resulting model uncertainties, indicating the predictive 

quality of the numerical models are summarized in Tables 

5, 6, and 7, for the test Sets I, II, and III, for four models. 

Table 8 shows the results for Set IV for three models (3D 

only). The model uncertainties of the crack width simula-

tion are summarized in Table 9.  

4  Discussion of model quality 

Satisfactory simulation results are manifested by a mean 

model uncertainty close to unity (showing a low bias), and 

a low coefficient of variation (consistency). These are 

marked in Table 5 in red color. It can be observed that the 

models 3D-M30 and 3D-M15, e.i. 3D models with medium 

and fine meshes, provide an excellent prediction for max-

imum and mean crack width for Set I (typical RC beams). 

Furthermore, the ratio wmax/wm is also well reproduced. 

On the other hand, the plane stress model (2D-M30) 
demonstrates a remarkably inferior performance, signifi-
cantly underestimating the crack width and the ratio 
wmax/wm (Table 5). A similar trend is valid for other da-
tasets. This can be explained by the assumption of one 
crack throughout the beam thickness in the plane stress 
model. Therefore, the 2D modeling concept is not recom-
mended for the cracking analysis, though it can represent 

the deformation response adequately (Gribniak et al. [7]). 



Set II (Table 6) of six nominally identical beams demon-
strates the evidence of aleatory uncertainty. The average 
parameters for the geometry and material of the beams 
are assumed in the simulation. Therefore, only one simu-
lation is made for all beams of this data set. An improve-
ment can be observed with the model refinement. The fine 
model 3D-M15 provides a maximum crack width overesti-
mation of 15%, a mean crack width underestimation of 
22%, and a ratio wmax/wm overestimation of 44%. The poor 
performance of this data set can be attributed to the effect 
of material heterogeneity on the strain localization, which 

is dominant for the low reinforcing ratio. This was also ob-
served by Gribniak [26]. Gribniak [27] presented a rele-
vant example of the random nature of concrete’s mechan-
ical performance. 
The coarse model 3D-M60 in all cases overestimated the 

maximum and mean crack width, which is essential for en-

gineering applications and can be regarded as a conserva-

tive design check.  

The effect of reinforcement arrangement is investigated in 
Set III with three layers of reinforcement. This effect can 
be observed from a comparison with the counterparts in 
Set I, with one layer reinforcement arrangement but the 
same reinforcing ratio. The analysis indicates that replac-
ing the single-layer reinforcement arrangement with the 
multilayer arrangement with the small bar diameter and 
spacing increases the model uncertainty and indicates the 
crack width underestimation by about 50% for medium 
and fine meshes (3D-M30 and 3D-M15). This poor perfor-

mance can be attributed to the composite nature of such 
material, where the bar interaction is dominant. Unfortu-
nately, the small number of samples does not allow us to 
draw strong conclusions.  

The results of Set IV with the GFRP reinforcement are 
shown in Table 8. In this case, the low stiffness of the re-
inforcement material becomes significant. Since the rela-
tion of the elastic moduli of GFRP and steel is about 1:3, 
the reinforcing ratio of the GFRP beams corresponds to ρ 
= 0.2% of the beams with the steel reinforcement. This is 
an even lower value than in group B. Thus, the conclusions 
from group B can be applied also here. 

This study is based on a limited experimental database 
and does not allow a robust probabilistic analysis. Never-
theless, it offers indicative results and describes trends. It 
offers a general approach for quantification of the model 
uncertainty for the crack width prediction by nonlinear 
analysis, which can be quantitatively extended by adding 
more samples. The safety format approach proposed by 
Cervenka [28] can be applied with a reliability index rele-
vant to the serviceability limit state.  

4  Cracking simulation of typical beams 

Beam S1-4 from Set I is chosen to illustrate the cracking 
simulation. It is reinforced with two 22 mm bars in a single 

layer with a reinforcing ratio of 1% and 20 mm cover 
depth. The model with a 1D bar is neglecting the bending 
stiffness and considers the concrete cover 31 mm. The 
model with a 3D bar considers the bending stiffness and 
the real cover size of 20 mm.  

A crack formation starts at the early loading stage, where 

the diffused microcracks appear followed by the formation 

of discrete cracks, see Figure 7. (Documented also by 

Jakubovsis [29]). Although the simulated crack pattern 

agrees with the experiment there is a difference in the 

process of crack propagation. The crack widths at the load 

level P=36 kN  w=0.014 mm and 0.038 mm, in the exper-

iment and simulation, respectively, are different due to the 

rate of the cracking process, which is gradual in an exper-

iment and sudden in the simulation. This is reflected in the 

load–displacement curves in Figure 8. This difference was 

previously observed by the authors Cervenka et al. [30] 

and can be justified by the material heterogeneity, which 

is not accounted for in the simulations.  

The overall load-displacement response for several models 

is shown in Figure 9. It includes three 1D bar models M60, 

M30, and M15, and a 3D bar model M10. The offset of the 

load-displacement curve without shrinkage reflects a 

shrinkage effect. It brings the maximum crack width in-

crease of 25%, which confirms the previous observations 

of the authors that the shrinkage must be included in anal-

ysis. 

 

Figure 7 Crack simulation at the crack formation stage. 

 

Figure 8 Load-displacement response at the crack initiation stage. 

 

Figure 9 Overall load-displacement response of S1-4 beam from sim-

ulations and experiment.  



Fig.6.3-1The stabilized crack pattern is analysed and compared with 
the experiments at the load P=100 kN in  

Figure 10. It includes three 1D bar models M60, M30, and 

M15, and a 3D bar model M10. The crack patterns are 
shown on the concrete surface. (In the case of the model 
M10 with a 3D bar only a symmetrical half of the beam 
was modeled). The crack pattern inside of the concrete 
body is shown in Figure 11. for 1D M15 and 3D M10 bar 
models. The internal view demonstrates two types of 
cracks: The wide primary cracks propagate through the 
entire beam width, while the smaller secondary cracks, lo-
cated between the primary cracks, are reflecting a con-
crete bond action. The secondary cracks were first de-

scribed by Goto [31]. 

 

Figure 10 Experimental and simulated crack patterns, on the sur-

face. 

 

Figure 11 Inside cracks from the simulation 

 

Figure 12 Bond stress distribution in 1D embedded bar of the 3D-M30 

model. 

The distribution of the bond stress along the 1D bar shown 
in Figure 12 obtained by the simulation demonstrates the 
stress transfer from concrete to reinforcement between 
the primary cracks and provides evidence for the 
engineering crack model, presented e.g. in the fib Model 

Codes. However, the presented finite element-based mod-
eling concept overcomes the simplifying assumptions for 
the effective concrete area and tension-stiffening required 
in the engineering models.  

The parameter study presented in Table 10 describes the 

model effects. 

Table 10  Comparison of the crack width prediction for FE models of 

beam S1-4. 

Model R- bars εcs, ‰ wm wmax wmax/wm 

3D-M30-0 

1D 

– 0.063 0.099 1.559 

3D-M30 2.253 0.073 0.124 1.687 

3D-M15 2.253 0.080 0.149 1.877 

3D-M10 3D 2.253 0.081 0.144 1.786 

 

Table columns show subsequently: 1. Beam dimension 

and mesh size; 2. Bar dimension; 3. Shrinkage in ‰; 4. 

Mean crack width; 5. Maximum crack width; 6. Maximum 

to mean crack width ratio. The objective of this study is 

the effect of various models on the crack width. (In this 

case, a comparison with the experiment is not relevant 

since it is affected by the aleatory uncertainty.)  Assuming 

that the model with a 3D bar 3D-M10 is the most accurate 

one, i.e. the target solution, the predicted mean crack 

width increases (prediction improves) with the model re-

finement. The mesh refinement from 30 mm to 15 mm 

brings an increase of the maximum crack width by 20% 

and leads to the crack width being slightly greater than 

the target solution. This is due to the difference in the con-

crete cover sizes, 31 mm in the 1D bar and 20 mm in the 

3D bar, respectively. The two improvements, namely the 

mesh refinement within the concrete cover and the 3D bar 

dimension have opposite effects on the crack width. From 

this point of view, the 3D bar model, which represents a 

substantial computational demand, is not needed. How-

ever, the 3D bar model offers a better reproduction of the 

experimental crack pattern. It provides the best primary 

crack location and spacing. This is probably due to the 

bending stiffness, which is more realistic in the 3D bar 

model. 

The offset of the load-displacement curve without shrink-

age, shown in Figure 9, reflects a shrinkage effect. It 

brings the maximum crack width increase of 25%, which 

confirms the previous observations of Gribniak [27] that 

the shrinkage must be included in the analysis. 

Interestingly, a low mesh effect on the beam stiffness is 

observed from the load-displacement curves. This is in 

contrast with the same effect on the crack width, where 

the crack width of the coarse model M60 was 40% greater 

than in the models M30 and M15, see Tables 5 and 6. This 

indicates, that the smeared crack model is more sensitive 

to a (local) strain localization than to an (integral) deflec-

tion.  

The response of 1D bar models is slightly stiffer compared 

to the experiment. Almost perfect deformation fit is pro-

vided by the model M10 with the 3D bar, which can be 

attributed to its more realistic geometry (elimination of 

concrete in the volume of bars).  

5 Engineering approach 

The uncertainty of the engineering model is examined for 

the same data used in the above study to present a com-

parison of two modeling approaches. The two models are 

considered, the first one according to the fib Model Code 



2010 [22], and the second one according to the fib Model 

Code 2020 (under preparation). These models represent 

the state-of-the-art level in this field. They are based on 

the principle of the equilibrium between the tensile stress 

in concrete and the bond stress and differ in the values of 

coefficients. The maximum crack width for the short-term 

loading condition and good bond performance is deter-

mined as follows: 

𝑤𝑑 = 𝛽𝑤 𝑙𝑠,𝑚𝑎𝑥(𝜀𝑠𝑚 − 𝜀𝑐𝑚 − 𝜀𝑐𝑠) 

= 𝛽𝑤 (𝑘𝑐 +
1

4

𝑓𝑐𝑡𝑚

𝜏𝑏𝑚𝑠

∅𝑠

𝜌𝑠,𝑒𝑓
) (

𝜎𝑠−𝛽
𝑓𝑐𝑡𝑚(1+𝛼𝑒𝜌𝑠,𝑒𝑓)

𝜌𝑠,𝑒𝑓

𝐸𝑠
−  

𝑟
𝜀𝑐𝑠)          (11) 

The above expression employs the stress equilibrium con-

dition in a cracked section when the crack spacing s = 𝛽𝑤 

ls,max , ls,max is the bond transfer length. It assumes the fol-

lowing empirical parameters: 

𝑘 = 1.0; 𝜏𝑏𝑚𝑠 = 1.8𝑓𝑐𝑡𝑚; 𝛽 = 0.6;  
𝑟

= 0.          (12) 

In this 𝛽𝑤 – crack spacing factor, k – concrete cover factor, 

𝜏𝑏𝑚𝑠 – bond stress, 𝛽 – tension stiffening factor and   
𝑟

− 

concrete shrinkage factor. 

The crack spacing factor is assumed as 𝛽𝑤=2 or 1.7 in MC 

2010 and MC2020, respectively. 

Balazs et al. [23] provide a more detailed explanation of 

this model. 

The model uncertainties of maximum crack width were 

evaluated for beams reinforced by the steel bars using Eq. 

(11) and are summarized in Table 11. 

 

Table 11 Crack width model uncertainty for MC 2010 and MC 2020 

  Exper. MC 2010 MC 2020 

Set Beam wmax wmax w,max  CV wmax w,max  CV 

I 

S1-2 0.102 0.179 0.569 

0.549 0.074 

0.168 0.608 

0.667 0.147 

S1-3 0.140 0.238 0.589 0.209 0.670 

S1-4 0.120 0.229 0.525 0.192 0.624 

S1-6 0.060 0.105 0.572 0.072 0.836 

S2-3 0.120 0.245 0.490 0.201 0.598 

II 

S3-2-1 0.140 0.369 0.380 

0.385 0.073 

0.289 0.484 

0.499 0.080 

S3-2-2 0.120 0.315 0.380 0.241 0.497 

S3-2-3 0.140 0.332 0.421 0.252 0.556 

S3-2-6 0.140 0.363 0.386 0.279 0.503 

S3-2-9 0.120 0.356 0.337 0.276 0.435 

S3-2-10 0.162 0.402 0.403 0.312 0.519 

III 
S1-1 0.124 0.149 0.831 

0.801 0.053 
0.144 0.864 

0.868 0.006 
S2-1 0.082 0.106 0.771 0.094 0.872 

All  0.512 0.300  0.620 0.241 

For the recent Model Code 2020, the evaluation shows the 

following crack width overestimation: 50% for Set I (a typ-

ical beam with a single layer reinforcement), 100% for Set 

II (low reinforcing ratio in a single layer), and 15% fo Set 

III (multilayer reinforcement arrangement). These results 

indicate a trend similar to the one observed in the numer-

ical model, although the mean uncertainty values are dif-

ferent.  

The analysis of the data by sets reveals a systematic effect 

(bias) reflected in the mean uncertainty. It is highest in 

Set II and lowest in Set III (multilayer arrangement). This 

indicates a trend similar to the numerical model (Table 9) 

although the mean uncertainty values are different. The 

strong systematic effect (bias) is underlined by the low 

coefficients of variation of individual sets within the range 

of 7% and 15% for MC2010 and MC 2020, respectively. 

In summary, the crack width is overestimated for the MC 

2010 by 95%, and for the MC 2020 by 61%. Thus, predic-

tion according to the recent code MC 2020 is less con-

servative and closer to reality for this data set. Apparently, 

this is due to the smaller factor 𝛽𝑤 in the MC 2020. 

6 Conclusions 

The uncertainty of the crack widths model based on the 

numerical simulation and fracture mechanics is investi-

gated in this chapter. The numerical results based on 37 

model cases are verified by the experimental data of the 

crack width measurements of 17 beam specimens with the 

following conclusions: 

1. The satisfactory predictions of mean and maximum 
crack widths are provided for normal concrete beams 
with a reinforcing ratio from 0.5% to 1%, and a single-
layer bar arrangement.  

2. The finite element mesh size affects the crack width 

prediction. The acceptable prediction was found for 
the mesh size range from 15 mm to 30 mm, confirmed 
by the model uncertainties close to unity, with the co-
efficient of variation within 16%. The minimum crack 
band limit of 18 mm was used for the mesh sizes 
smaller than this limit.  

3. For the small reinforcing ratio of 0.3%, only the fine 
mesh of 15 mm offered an acceptable prediction of the 
maximum crack width, with the overestimation by 
15%, and accompanied by a low coefficient of varia-
tion of 11%.  

4. The crack width in beams with GFRP bars is underes-

timated by 18% to 48%.  
5. The simplified 2D - plane stress model underestimated 

the crack width predictions by 53% to 70%. 
6. A reinforcement model based on the truss element 

without bending stiffness represents an acceptable 
modeling method for the cracking simulation. 

7. The crack width prediction according to the Model 
Code 2020 is overestimated by 50%. 
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